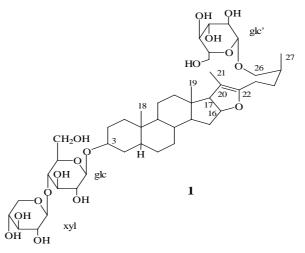
A New Enolate Furostanoside from Asparagus Filicinus

Xiao Dong CONG¹, Wen Cai YE²*, Chun Tao CHE³


¹Department of Pharmacognosy, China Pharmaceutical University, Nanjing 210009 ²Department of Phytochemistry, China Pharmaceutical University, Nanjing 210009 ³School of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong

Abstract: A new enolate derivative of furostanol glycoside, named asparagusin A, was isolated from the roots of *Asparagus filicinus* and established as $3-O-\beta$ -D-xylopyranosyl(1 \rightarrow 4)- β -D-glucopyranosyl (25S)-furost-20(22)-ene-3 β , 26-diol 26- $O-\beta$ -D-glucopyranoside (1) by spectroscopic and chemical methods. Asparagusin A (1) exhibited a cytotoxic activity effect on PC₁₂ cells.

Keywords: Asparagus filicinus, Liliaceae, furostanol glycoside, asparagusin A, cytotoxic activity.

The roots of *Asparagus filicinus* Buch.-Ham are used to treat lung diseases such as bronchitis, pneumonities and cough in folk medicine¹. Some steroidal glycosides have been isolated and characterized from the roots of this plant by several research groups²⁻³. In this paper, we report the isolation of a new unusual furostanol glycoside possessing an enolate moiety, whose structure was determined by 1D and 2D NMR methods, FABMS, and hydrolysis. Bioassay results showed that the compound exhibited a cytotoxic activity on PC₁₂ cells with IC₅₀ 9.2 µg/mL value.

Figure 1. Structure of asparagusin A

Compound 1 was isolated as an amorphous powder from the EtOH extract of the roots of this plant. The FAB-MS of 1 displayed quasi-molecular ions $[M + H]^+$ and $[M + Na]^+$ at m/z 873 and 895, respectively, consistent with a molecular formula of C₄₄H₇₂O₁₇.

Xiao Dong CONG et al.

Complete acid hydrolysis of 1 afforded sarsasapogenin, which was identified by comparison of its NMR and IR data with those reported in the literature⁴, and glucose and xylose identified by comparison with authentic samples by TLC. Acetolysis of 1 yielded a genuine aglycon (25S)-furost-20(22)-ene- 3β , 26-diol which was confirmed by its NMR and MS data⁵. The ¹H and ¹³C NMR spectra (**Table 1**) of **1** clearly showed the presence of a steroid skeleton possessing an 20(22)-en moiety (& 103.6 and 152.4), which formed an enolate moiety with the oxygen atom of furan ring, the three sugar residues were clearly indicated by three anomeric carbon signals at $\delta 103.0$, 105.3 and 105.7, and the corresponding three anomeric proton signals at δ 4.90 (d, J = 7.6 Hz), 4.83 (d, J = 7.2 Hz), and 5.15 (d, J = 7.2 Hz). The above data together with 2D NMR results indicated that the saccharide part was composed of two β -glucose and one β -xylose residues, and their absolute configurations were assumed to be D.

Comparison of the 13 C NMR data of 1 with those of the aglycon⁵ indicated main glycosylation shifts at C-3 (+ 8.8 ppm) and C-26 (+ 7.8 ppm) positions, respectively. Thus, both the hydroxyl at C-3 and that at C-26 were glycosylated. In the HMBC spectrum of 1, correlation peaks were observed between H-1 (δ 4.90) of the glucose and C-3 (δ 74.8) of the aglycon, as well as H-1 (δ 5.15) of xylose and C-4 (δ 81.1) of the glucose. It was concluded that a disaccharide chain possessing one glucose and one xylose units was bonded to the hydroxyl at C-3 position of the aglycon. Moreover, the HMBC spectrum revealed a correlation peak between another glucose anomeric proton $(\delta 4.83, \text{H-1'})$ and C-26 $(\delta 75.3)$ of the aglycon. Hence, asparagusin A (1) was established to be $3-O-\beta-D-xy$ lopyranosyl(1 \rightarrow 4)- $\beta-D$ -glucopyranosyl (25S)-furost-20(22)-ene-3 β , 26-diol 26-*O*- β -D-glucopyranoside.

С	δ	С	δ	С	δ	С	δ
1	30.7	15	31.6	C-3		C-26	
2	27.2	16	84.7	Glc 1	103.0	Glc 1'	105.3
3	74.8	17	64.8	2	75.2	2'	75.1
4	31.1	18	14.6	3	76.7	3'	78.7
5	37.1	19	24.1	4	81.1	4'	71.8
6	27.2	20	103.6	5	76.6	5'	78.7
7	27.0	21	12.0	6	62.0	6'	63.0
8	35.4	22	152.4				
9	40.3	23	34.6	Xyl 1	105.7		
10	35.4	24	23.8	2	75.3		
11	21.5	25	33.9	3	78.5		
12	40.2	26	75.3	4	71.0		
13	44.0	27	17.4	5	67.5		
14	54.9						

Table 1. ¹³C NMR Data of 1

References

- Jiangsu New Medical College, *Dictionary of Chinese Medicinal Materials*, Shanghai Scientific and Technological Press: Shanghai, **1977**, Vol. 1, p.875. 1.
- 2
- 3.
- Y. Ding, C.Y. Yang, *Acta Pharma. Sinica*, **1990**, *25*, 509.
 S. C. Sharma, N. K. Thakur, *Phytochemistry*, **1994**, *36*, 469.
 P. K. Agrawal, P. Bunsawansong, G. A. Morris, *Magn. Reson. Chem.*, **1997**, *35*, 441. 4.
- 5. J. X. Dong, G. Y. Han, Acta Pharm. Sinica, 1992, 27, 26.

Received 18 February 2000